PREVENTING MEDICAL DEVICES RECALLS

Dev Raheja
Product Assurance Consultant
Laurel, Maryland 20708

draheja@aol.com

Outline

Issues in Medical Device Safety
Examples of medical device failures
Improving reliability-the right way
Writing good specifications
Using risk analysis tools
Design for reliability
Design improvement techniques
Process FMEA to design out
manufacturing problems
Validation testing

Issues in Medical Device Safety

Adverse Event is not an option

Damage done to patients is very serious

The costs of product recall are enormous

SOURCES OF ERRORS

Examples of Device Failures

Wrong dose of radiation Memory chip failure in the diffusion pump Faulty leads in defibrillators **Inaccurate results from MRI Delivering too much radiation** Pacemaker failures in shopping center from the cashier device Improperly sanitized surgical tools Maintenance errors on devices False negatives or positives on lab equipment Plastic intravenous tubes containing toxic **BPA Device mislabeling**

Improving reliability-the right way

- No adverse event goal
- ➤ No failure during medical interventions
- > No harm to patients

Writing good specifications

Cross functional team **Every team member must challenge** the specification to identify missing **functions Conduct negative requirements** analysis to identify more missing requirements

Negative Requirements Analysis

Negate Functions

Negate Procedures

 Negate performance of critical components ISO 14971 –Risk Management standard

Preliminary Hazard Analysis
Failure Mode and Effects
Analysis
Fault Tree Analysis
HAZOP
HACCP

Design for Reliability (DFR) is a process. If the right process is not followed, results cannot be depended upon to be right.

 Important to get customers involved: They tell us what we don't know

HOW?

Design for
Twice the Life For Devices
such as the Ventilator assist
device

Design For
Fallback Modes
such as
alarms, barriers

Design for Twice the Life is Cheaper!

No warranty costs
Often no testing is needed

No Maintenance
Increased market share
Over 60% reduction in testing

HIGH RELIABILITY COMES AT LOWER PRICE

This Life Cycle Costing method is useful in every situation. Let us apply this principle to making decisions on a process selection for higher quality.

Suppose the design engineers gave us a blue print of a gear, press fit on a shaft, and a weld holds the two together. This is shown in the diagram below.

Gear/shaft assembly Shaft Weld

Design Improvement Techniques

Predict and eliminate safety failures
Predict and eliminate design failures
Predict and eliminate software
failures
Predict and eliminate maintenance
failures
Use human-centered design to

counter human errors

World Class Benchmarks for Medical Devices

Cooper Industries: Double market share with 15 year warranty

Toyota: Prove technology before selling

Hyundai: Let long warranty drive business

Corning: No tolerance for hidden failures

Gillette: Attention to quality at Board level

The Paradigms For Design Improvement

• Paradigm 1: Spend Significant Effort on Requirement Analysis

 Paradigm 2: Critical Failure is Not an Option for Medical Devices

 Paradigm 3: Measure Reliability by Life Cycle Costs

The Paradigms For Design Improvement

 Paradigm 4: Don't Just Design for Reliability, Design for Durability

 Paradigm 5: Design for Prognostics to minimize surprise failures

Process FMEA to design out manufacturing problems

This analysis is applied to all the processes. The first step is to develop a flowchart for a process so we understand the process. Each block in the flowchart is treated as a component. Then a table similar to Design FMEA is constructed.

CONTROL PANEL PROCESS FMEA

PROCESS FMEA Product <u>Panel Assembly Process</u> Team Members _____ Date ____ Page of

Process Description	Process Function	Failure Mode	Causes	Effects	SEV	FREQ	DET	RPN	Recommended Control
Procure zinc plated plastic panel	Provide conductive surface	Plating may not adhere to plastic surface completely	Dirty parts during plating process	Product malfunction	7	3	10	350	Use carbonized plastic instead of platingl.
Mount fuel gage	To provide fuel reading	Cage may be mounted upside down	Operator error	Customer will need to send product for repair	7	2	2	28	Design the mounting holes in different sized so the gage cannot be mounted wrong.
Assemble functon indicators	To snap in lamp cover in proper sequence	Cover installed in wrong sequence	Operator error	Customer confused and gets false indications	8	4	2	64	Silk screen letters on the panel instead of lamp cover.
Install warning lights	To install warning light in proper location	Warning light cover interchanged with caution lamp cover	Operator error	Customer may not get warning	9	2	2	36	Choose different size socket for warning light.
Make wiring connections	Provide electrical circuit	Wired wrong	Operator error	Product functioning improperly	8	4	10	320	Design harness assembly.

Design Validation

DURABILITY GOALS Manufacturing Influence

NEW DEVELOPMENT

 FDA has introduced a Unique Device Identification system

 Manufacturers are required to label devices with a new device ID each time there is a major engineering change

 The label must include Production ID linked to serial numbers

SUMMARY

Must develop robust product specifications

Must conduct Negative Requirements Analysis

Must use all the ISO 14971 risk analysis tools

Must eliminate all the foreseeable harm to users